Kamis, 11 September 2014

Resume Sejarah Perkembangan Teori Bahasa Dan Otomata

         Kali ini saya mau mengupas sedikit yang saya pelajari tentang mata kuliah TEORI BAHASA DAN OTOMATA, postingan ini tentang RESUME SEJARAH TBO,,,,!!!!!






SEJARAH DAN PERKEMBANGAN TEORI BAHASA OTOMATA



Bahasa adalah struktur yang dikendalikan sekumpulan aturan tertentu, semacam mesin untuk memproduksi makna. Akan tetapi seperti setiap mesin hanya terdapat kemungkinan terbatas bagi setiap orang dalam menggunakannya.

Dalam bahasa disediakan pembendaharaan kata atau tanda (vocabulary), serta perangkat aturan bahasa (grammar, sintaks) yang harus dipatuhi jika hendak menghasilkan sebuah ekspresi yang bermakna.

Proses Kemampuan Pemahaman Bahasa

Hipotesis Noam Chomsky menggugat postulat John Locke (tokoh empirisme) yang menyatakan segala pengetahuan yang dimiliki manusia berasal dari rangsangan-rangsangan luar (pengalaman) yang ditangkap oleh indera-indera manusia, sehingga meniadakan pengetahuan apriori (pengetahuan yang langsung tertanam di manusia)
Noam Chomsky menyandarkan pada pemahaman bahasa sebagai sesuatu yang bersifat khas dan bawaan (tertanam) pada manusia sejak lahir.

Secara khusus Chomsky dipengaruhi Descartes tentang bahasa dan pikiran yang terikat begitu erat sehingga pengetahuan tentang bahasa bisa membuka pengetahuan tentang pikiran manusia, Secara mendasar bahasa adalah bagian psikologi manusia yang dipahami sebagai teori tentang kemampuan pikiran manusia berupa ungkapan dari subjek psikologi.
Chomsky dan para ahli bahasa telah mengamati anak kecil mampu menjadi lancar berbahasa lebih cepat dan mudah dibanding "algoritma belajar berbahasa". 
Sehingga para ahli bahasa membuat hipotesis otak berisi/memuat suatu "mesin bahasa umum". Kemudian selama masa awal pertumbuhan anak, terjadi pertemuan dengan bahasa sehari-hari yang mengubah mesin bahasa umum menjadi mesin bahasa partikular (tertentu) ke bahasa spesifik.


Teori Bahasa

Teori Bahasa adalah konsep-konsep pada "string alpabet V" dalam penyambungan karakter-karakter alpabet untuk membentuk suatu makna (bahasa).

- Alpabet

Adalah himpunan simbol (karakter) tak kosong yang berhingga. Alpabet digunakan untuk membentuk kata-kata (string-string) di bahasa. Bahasa dimulai dengan alpabet. Pada beberapa buku, alpabet dilambangkan dengan Σ

Istilah huruf, karakter dan simbol adalah sinonim menunjukkan elemen alpabet. Jika simbol berbaris bersebelahan, maka diperoleh "string simbol". Istilah kalimat, kata dan string adalah sinonim

Contoh : 
{a,b} -> Himpunan yang terdiri dari simbol "a" dan "b".



- Penyambungan (Concatenation - o)

Penyambungan dilakukan pada 2 karakter atau lebih membentuk 1 barisan karakter (string simbol).

Contoh : 
'a' o 'b' = 'ab'
'ab' o 'baab' = 'abbaab'


- String pada alpabet V
Karakter atau barisan karakter pada alpabet V dibentuk dari penyambungan karakter pada alpabet V. 

String pada alpabet V adalah deretan (sekeun) simbol dari V dimana perulangan simbol diijinkan.

Contoh :
V = {a,b,c,d}
String pada alpabet V antara lain -> 'a','abcd','bbba'

Pemangkatan
Penyambungan dapat dianggap sebagai perkalian karena biasanya penulisannya adalah bila x dan y string, maka x o y adalah xy. sehingga pemangkatan dapat digunakan

VoV = VV = V2 ----> Panjang string = 2
VoVoV = V2oV=V3 -> Panjang string = 3
VoVoVoV = N4 ----> Panjang string = 4
VoVoVo...oV=Vn ---> Panjang string = n


Vk = VoVoVo...oV
adalah himpunan string dengan panjang k, masing-masing simbol adalah alpabet V

V* = {ε} U V+ (Kleene closure)
adalah string pada V, termasuk string kosong dimana ε string kosong (string tanpa simbol) 
ε mempunyai sifat identitas, yaitu:
ε o x = x
x o ε = x

V+ = V1 U V2 U V3 U ... (Positive closure)
adalah himpunan string pada V, tidak ada string kosong didalamnya.

V0 = {ε}
adalah himpunan yang isinya hanya string kosong, dimana String kosong ε tidak sama dengan himpunan kosong 


Maka 'bbba' dapat ditulis 'b3a'


Panjang String
Panjang string dilambangkan |w| dimana panjang string adalah jumlah simbol di dalam string bukan pada alpabet dan pengulangan kemunculan simbol dihitung.

Contoh:
|ε| = 0
|a| = 1
|aa| = 2
|aaa| = 3
|aaab| = 4

Otomata

Otomata adalah mesin abstrak yang menggunakan model matematika, tetapi matematika yang digunakan benar-benar berbeda dibanding matematika klasik dan kalkulus. Model yang digunakan adalah model mesin state (state machine model) atau model trnasisi state (state transition model).

Terdapat 3 model komputasi pada teori otomata.
- Finite automata
- Pushdown automata
- Turing Mavhine


Memori Otomata

Otomata dibedakan berdasarkan jenis memori sementara yang dimilikinya, yaitu:

- Finite automata (FA)
Tidak memiliki memori sementara. Finite automata adalah kelas mesin dengan kemampuan-kemampuan paling terbatas.

- Pushdown automata (PDA)
Memiliki memori sementara dengan mekanisme LIFO (Last In, First Out). Mesin ini lebih ampuh karena bantuan keberadaan stack yang dipandang sebagai unit memori

- Turing Machine (TM)
Memiliki memori dengan mekanisme pengaksesan acak (Random akses memori). Turing Machine merupakan model matematika untuk komputer saat ini.


Sejarah Otomata dan Teori Bahasa

Otomata bermula sebelum komputer ada pada teori di bidang sistem logika matematika atau formal, ilmuwan David Hilbert telah mencoba menciptakan algoritma umum untuk pembuktian (seluruh) persoalan matematika secara otomatis yaitu mampu menentukan salah benarnya sembarang prosisi matematika.

Tahun 1931, Kurt G,,del mempublikasikan teori ketidaklengkapan dimana membuktikan prosedur/algoritma yang dikehendaki David Hilbert tersebut tidak akan pernah ada.

G,,del membangun rumus di kalkulus predikat yang diterapkan pada bilangan bulat yang memiliki pernyataan-pernyataan definisi yang tidak dapat dibuktikan maupun dibantah di dalam sistem logika yang mungkin dibangun manusia.

Formalisasi argumen teorema ketidaklengkapan G,,del ini berikut penjelasan dan formalisasi selanjutnya dari prosedur efektif secara intuisi merupakan salah satu pencapaian intelektual terbesar abad 20, yaitu abad dimana formalisasi berkembang semarak.

Pengembangan teori otomata, komputasi dan teori bahasa berikutnya difasilitasi perkembangan bidang psyco-linguistic. Bidang psyco-linguistic berupaya menjawab pertanyan-pertanyan berikut:
- Apakah bahasa secara umum?
- Bagaimana manusia mengembangkan bahasa?
- Bagaimana manusia memahami bahasa?
- Bagaimana manusia mengajarkan bahasa ke anak-anaknya?
- Apa gagasan-gagasan yang dapat dinyatakan dan bagaimana caranya?
- Bagaimana manusia membangun kalimat-kalimat dari gagasan-gagasan yang berada di pikirannya?

Sekitar tahun 1950-an, Noam Chomsky menciptakan model matematika sebagai sarana untuk mendeskripsikan bahasa serta menjawab pertanyaan-pertanyaan di atas. Saat ini dimulai pendalaman bidang bahasa komputer.

Perbedaan antara bahasa komputer dan bahasa manusia adalah sampai sekarang belum diketahuinya bagaimana cara manusia mengartikan bahasa, sementara dengan pasti dapat mengartikan bahasa pada komputer.

Noam Chomsky mengemukakan perangkat format disebut grammar untuk memodelkan properti-properti bahasa.

Grammar berisi sejumlah aturan serta menspesifikasikan bahasa tertentu.

Bahasa berisi semua string yang dapat dihasilkan menggunakan aturan-aturan grammar.

Meski pembahasan Chomsky terutama ditujukan untuk bahasa alami, grammar mempunyai nilai/manfaat sangat besar di ilmu informatika/komputer karena pencapaian ini digunakan untuk mendeskripsikan dan mendefinisikan sintaks bahasa pemrograman dan bahasa-bahasa formal lainnya.

Grammar diterapkan pada perancangan kompilator dan bidang-bidang di ilmu komputer.

McCulloch dan Pitts mengemukakan Mesin Abstrak sederhana yaitu finite automata untuk memodelkan neuron nets.

Finite automata juga digunakan untuk merancang switching circuit. Studi mengenai teori otomata terkait bidang-bidang lain di ilmu komputer.

Kemudian ekivalensi antara finite automata dan ekspresi reguler (reguler expression) dikemukakan Stephen Kleene. Sejak saat itu teori bahasa dikaitkan secara erat dengan teori bahasa formal. ubungan teori otomata dan teori pengkodean (coding theory) juga banyak diteliti.

Turing machine seperti komputer modern saat ini dapat mengolah (simbol-simbol di tape) dan mengahasilkan keluaran (simbol-simbol yang berada di tapenya setelah berakhirnya sebarisan pergerakkan) merupakan karya teoritis dari Alan Turing.

Karena banyak yang berperan pada pengembangannya, bidang teori ini diberi aneka ragam nama yaitu:
- teori otomata (theory of automata)
- teori bahasa formal (theory of formal language)
- teori mesin turing (theory of Turing machine).

Teori bahasa membicarakan bahasa formal (
 formal language
), terutama untuk kepentingan perancangan kompilator (
compiler 
) dan pemroses naskah (
text 
 processor 
). Bahasaformal adalah kumpulan
kalimat 
Semua kalimat dalam sebuah bahasa dibangkitkan oleh sebuahtata bahasa (
 Grammar
) yang sama. Sebuah bahasa formal bisa dibangkitkan oleh dua atau lebihtata bahasa berbeda. Dikatakan bahasa formal karena grammar diciptakan mendahului pembangkitan setiap kalimatnya. Tata bahasa (grammar) adalah kaidah/aturan pembentukankata/kalimat. Pada pembahasannya, bahasa formal hanya disebut bahasa saja.Bahasa dalam bentuk tulisan terdiri atas symbol-simbol satuan yang jika dikombinasikanakan mempunyai arti yang berbeda. Simbol-simbol yang biasa dipergunakan dalam sebuah bahasa terbatas jumlahnya, yang membentuk sebuah himpunan dan disebut sebagaiabjad/alphabet. Namun kadangkala digunakan istilah karakter yang artinya sama dengan symbol.Deretan dari karakter atau symbol ini membentuk string. Dan himpunan dari semua string yangdibentuk dari suatu abjad ini didefinisikan sebagai bahasa.Karena bahasa adalah sebuah himpunan dari string, maka untuk mendefinisikan suatu bahasa bisa dilakukan dengan menuliskan semua string yang menjadi anggotanya. Tata Ba

hasaG = (T,N,S,P), di mana
• T adalah himpunan berhingga simbol
-simbol terminal
• N adalah himpunan berhingga simbol
-simbol non terminal
• S adalah s
imbol awal, S ( N

• P adalah himpunan berhingga aturan produksi yang setiap elemennya berbentuk * + ,,
 *, , ( (T U N)+, * harus berisi minimal 1 simbol non terminalSentential form adalah semua string yang dapat diturunkan dari simbol awal S denganmenggunakan aturan produksi P. Kalimat (sentence) adalah sentential form yang tidak mengandung simbol non terminal. Bahasa yang dihasilkan dari G dinotasikan dengan L(G), yaituhimpunan kalimat yang dapat diturunkan dari S dengan menggunakan P.

AUTOMATA

 Automata berasal dari bahasa Yunani automatos, yang berarti sesuatu yang bekerja secaraotomatis (mesin). Istilah automata merupakan bentuk tunggal, sedangkan bentuk jamaknyaadalah automaton. Teori automata adalah teori tentang mesin abstrak yang bekerja secarasekuensial yang menerima dan mengeluarkan output dalam bentuk diskrit.Pengertian mesin bukan hanya mesin elektronis/mekanis saja melainkan segala sesuatu(termasuk perangkat lunak) yang memenuhi ketiga ciri di atas. Penggunaan automata pada perangkat lunak terutama pada pembuatan kompiler bahasa pemrograman. Secara garis besar adadua fungsi automata dalam hubungannya dengan bahasa, yaitu :



fungsi automata sebagai pengenal (RECOGNIZER) string-string dari suatu bahasa, dalam halini bahasa sebagai masukan dari automata
fungsi automata sebagai pembangkit (GENERATOR) string-string dari suatu bahasa, dalamhal ini bahasa sebagai keluaran dari automataUntuk mengenali string-string dari suatu bahasa, akan dimodelkan sebuah automaton yangmemiliki komponen sebagai berikut :- pita masukan, yang menyimpan string masukan yang akan dikenali;- kepala pita (tape head), untuk membaca/menulis ke pita masukan.

Teori automata yang selama ini lebih banyak diterapkan dalam bidang tata bahasa formal khususnya dalam pengembangan sebuah compiler, juga dapat digunakan untuk
melakukan pemodelan dan pendekatan pemecahan masalah masalah yang berkaitan
dengan aplikasi aplikasi di dalam bidang kecerdasan buatan. Pada tulisan ini akan
diterapkan teori automata sebagai pendekatan pemecahan masalah dalam dua bidang aplikasi kecerdasan buatan, yaitu aplikasi permainan Ember Air dan aplikasi sistem pakar.

Teori Automata

Automata berhingga
Automata adalah suatu mesin sekuensial (otomatis), yang menerima input
(dari pita masukan ) dan mengeluarkan output, keduanya dalam bentuk diskrit. Automata mempunyai sifat-sifat

• Kelakuan mesin bergantung pada rangkaian masukan yang diterima mesin
tersebut.
• Setiap saat, mesin dapat berada pada satu status tertentu dan dapat berpindah ke
status baru karena adanya perubahan input.
• Rangkaian input (diskrit) pada mesin automata dapat dianggap sebagai bahasa

yang harus “dikenali” oleh sebuah automata. Setelah pembacaan input
selesai, mesin automata kemudian membuat “keputusan”.
Jenis- jenis automata :

Jenis
Pita Masukan
Arah Head
Memori
Finite State
Read Only
1 Arah
-
Push Down
Read Only
1 Arah
Stack
Linear-Bounded
R/W
2 Arah
(Bounded)
Turing Machine
R/W
2 Arah
(Unbounded)

Pada bahasan ini jenis automata yang akan dipakai adalah Finite State Automata (FSA). FSA adalah mesin yang dapat mengenali kelas bahasa reguler dan memiliki sifat-sifat :

1. Pita masukan (input tape) berisi rangkaian simbol (string) yang berasal dari himpunan
simbol / alfabet.
2. Setiap kali setelah membaca satu karakter, posisi read head akan berada pada simbol
berikutnya.
3. Setiap saat, FSA berada pada status tertentu
4. Banyaknya status yang berlaku bagi FSA adalah berhingga.

Suatu FSA didefenisikan sebagai F = (Q, S, q0, d, F) dengan
Q = himpunan state(keadaan)
∑ = himpunan input                                                                                                            
  q0 e Q adalah keadaan awal
&= Q x S .. Q adalah tabel transisi
F = keadaan akhir
Suatu NFA dapat direpresentasikan dalam bentuk bagan sebagai suatu graf yang diberi label dan disebut dengan graf transisi. Dalam graf transisi ini nodal adalah state dan label dari sisi menyatakan fungsi transisi, contoh Graf transisi NFA dapat dilihat pada
gambar1.


















Gambar 1. diatas mempunyai defenisis formal sebagai berikut :
Q  = {0, 1, 2, 3, 4}
∑ = {a,b}
q0 = 0
F = {2, 4}
&= diagram transisi dapat dilihat pada tabel 1


















Kecerdasan Buatan

Kecerdasan Buatan adalah bidang ilmu yang mendasarkan bagaimana sebuah komputer bisa bertindak seperti dan sebaik manusia. Dewasa ini, Penggunaan kecerdasan buatan dibutuhkan diberbagai disiplin ilmu. Irisan antara psikologi dan kecerdasan Buatan melahirkan area cognition and psycolinguistic. Irisan antara teknik elektro dengan kecerdasan buatan melahirkan ilmu : pengolahan citra, teori kendali, pengenalan pola dan robotika. Irisan ilmu manajemen dan kecerdasan buatan menghasilkan sistem pendukung keputusan.

Adanya irisan penggunaan kecerdasan buatan diberbagai disiplin ilmu menyebabkab
cukup rumitnya untuk mengklasifikasikan lingkup bidang ilmu kecerdasan buatan, sehingga pengklasifikasian lingkup kecerdasan buatan didasarkan pada output yang diberikan yaitu pada aplikasi komersial.

Lingkup aplikasi kecerdasan buatan meliputi :
1. sistem pakar
2. Pengolahan bahasa alami
3. Pengenalan ucapan
4. Robotika dan sistem sensor
5. Computer vision
6. Problem solving and planning
7. Permainan

Secara umum untuk membangun suatu sistem yang mampu menyelesaikan masalah,perlu dipertimbangkan 4 hal yaitu:
1. Mendefenisikan masalah dengan tepat. Pendefenisian ini mencakup spesifikasi
yang tepat mengenai keadaan awal dan solusi yang diharapkan.
2. Menganalisis masalah tersebut serta mencari beberapa teknik penyelesaian
masalah yang sesuai.
3. Merepresentasikan pengetahuan yang perlu untuk menyelesaikan masalah tersebut.
4. memilih teknik penyelesaian masalah yang terbaik.

Disamping itu NFA diatas mengandung e-move, (e berarti empty) yang artinya dapat merubah keadaan/ state tanpa membaca input. Pada gambar 1. diatas state 0 dapat berpindah ke state 1 atau state 3 tanpa membaca input.
Selanjutnya bahasa-bahasa yang diterima oleh suatu automata berhingga bisa
dinyatakan secara sederhana dengan ekspressi regular (Regular Expression / RE). RE memberikan suatu pola atau template untuk untai/ string dari suatu bahasa. RE pada gambar diatas adalah aa*| bb*. * artinya dapat diulang mulai 0 – n kali, dan | berarti “atau”.
Studi Kasus Permainan Ember Air
Terdapat 2 buah ember air nasing-masing berkapasitas 4 liter (ember A) dan 3 liter (ember B). Tidak ada tanda yang menunjukkan batas ukuran pada kedua ember tersebut. Bagaimanakah dapat diisi tepat 2 liter air ke dalam ember yangberkapasitas 4 liter ?
Untuk menyelesaikan masalah di atas maka dilakukan langkah-langkah berikut :
a. Mendefenisikan Masalah dan Representasi
Ruang Keadaan
Keadaan awal : kedua ember kosong (0,0)
Keadaan akhir / solusi : Ember A tepat berisi 2 liter air dan ember B sembarang (2, n)
Operator / aturan yang mungkin dilakukan dapat dilihat pada tabel 2.

Tidak ada komentar: